
Package: cirls (via r-universe)
September 13, 2024

Title Constrained Iteratively Reweighted Least Squares

Version 0.3.1

Description Routines to fit generalized linear models with constrained
coefficients, along with inference on the coefficients.
Designed to be used in conjunction with the base glm()
function.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE, old_usage = TRUE)

RoxygenNote 7.3.1

Imports quadprog, osqp, coneproj, TruncatedNormal, stats

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/PierreMasselot/cirls

Repository https://pierremasselot.r-universe.dev

RemoteUrl https://github.com/pierremasselot/cirls

RemoteRef HEAD

RemoteSha 8ca2f98aed6fb5601cd729fdb82bc614e698f682

Contents
check_cmat . 2
cirls.control . 3
cirls.fit . 5
coef_simu . 8

Index 12

1

https://github.com/PierreMasselot/cirls

2 check_cmat

check_cmat Check constraint matrix irreducibility

Description

Checks a constraint matrix does not contains redundant rows

Usage

check_cmat(Cmat)

Arguments

Cmat A constraint matrix as passed to cirls.fit()

Details

The user typically doesn’t need to use check_cmat as it is internally called by cirls.control().
However, it might be useful to undertsand if Cmat can be reduced for inference purpose. See the
note in confint.cirls().

A constraint matrix is irreducible if no row can be expressed as a positive linear combination of
the other rows. When it happens, it means the constraint is actually implicitly included in other
constraints in the matrix and can be dropped. Note that this a less restrictive condition than the
constraint matrix having full row rank (see some examples).

The function starts by checking if some constraints are redundant and, if so, checks if they underline
equality constraints. In the latter case, the constraint matrix can be reduced by expressing these
constraints as a single equality constraint with identical lower and upper bounds (see cirls.fit()).

Value

A list with two elements:

redundant Vector of indices of redundant constraints

equality Indicates which constraints are part of an underlying equality constraint

References

Meyer, M.C., 1999. An extension of the mixed primal–dual bases algorithm to the case of more
constraints than dimensions. Journal of Statistical Planning and Inference 81, 13–31. doi:10.1016/
S03783758(99)000257

See Also

confint.cirls()

https://doi.org/10.1016/S0378-3758%2899%2900025-7
https://doi.org/10.1016/S0378-3758%2899%2900025-7

cirls.control 3

Examples

###
Example of reducible matrix

Constraints: successive coefficients should increase and be convex
p <- 5
cmatic <- rbind(diff(diag(p)), diff(diag(p), diff = 2))

Checking indicates that constraints 2 to 4 are redundant.
Intuitively, if the first two coefficients increase,
then convexity forces the rest to increase
check_cmat(cmatic)

Check without contraints
check_cmat(cmatic[-(2:4),])

###
Example of irreducible matrix

Constraints: coefficients form an S-shape
p <- 4
cmats <- rbind(

diag(p)[1,], # positive
diff(diag(p))[c(1, p - 1),], # Increasing at both end
diff(diag(p), diff = 2)[1:(p/2 - 1),], # First half convex
-diff(diag(p), diff = 2)[(p/2):(p-2),] # second half concave

)

Note, this matrix is not of full row rank
qr(t(cmats))$rank
all.equal(cmats[2,] + cmats[4,] - cmats[5,], cmats[3,])

However, it is irreducible: all constraints are necessary
check_cmat(cmats)

###
Example of underlying equality constraint

Contraint: Parameters sum is >= 0 and sum is <= 0
cmateq <- rbind(rep(1, 3), rep(-1, 3))

Checking indicates that both constraints imply equality constraint (sum == 0)
check_cmat(cmateq)

cirls.control Parameters controlling CIRLS fitting

Description

Internal function controlling the glm fit with linear constraints. Typically only used internally by
cirls.fit, but may be used to construct a control argument.

4 cirls.control

Usage

cirls.control(epsilon = 1e-08, maxit = 25, trace = FALSE, Cmat = NULL,
lb = 0L, ub = Inf, qp_solver = "osqp", qp_pars = list())

Arguments

epsilon Positive convergence tolerance. The algorithm converges when the relative
change in deviance is smaller than epsilon.

maxit Integer giving the maximal number of CIRLS iterations.

trace Logical indicating if output should be produced for each iteration.

Cmat Constraint matrix specifying the linear constraints applied to coefficients. Can
also be provided as a list of matrices for specific terms.

lb, ub Lower and upper bound vectors for the linear constraints. Identical values in
lb and ub identify equality constraints. Recycled if length is different than the
number of constraints defined by Cmat.

qp_solver The quadratic programming solver. One of "osqp", "quadprog" or "coneproj".

qp_pars List of parameters specific to the quadratic programming solver. See respective
packages help.

Details

The control argument of glm is by default passed to the control argument of cirls.fit, which uses
its elements as arguments for cirls.control: the latter provides defaults and sanity checking. The
control parameters can alternatively be passed through the ... argument of glm. See glm.control for
details on general GLM fitting control, and cirls.fit for details on arguments specific to constrained
GLMs.

Value

A named list containing arguments to be used in cirls.fit.

See Also

the main function cirls.fit, and glm.control.

Examples

Simulate predictors and response with some negative coefficients
set.seed(111)
n <- 100
p <- 10
betas <- rep_len(c(1, -1), p)
x <- matrix(rnorm(n * p), nrow = n)
y <- x %*% betas + rnorm(n)

Define constraint matrix (includes intercept)
By default, bounds are 0 and +Inf
Cmat <- cbind(0, diag(p))

cirls.fit 5

Fit GLM by CIRLS
res1 <- glm(y ~ x, method = cirls.fit, Cmat = Cmat)
coef(res1)

Same as passing Cmat through the control argument
res2 <- glm(y ~ x, method = cirls.fit, control = list(Cmat = Cmat))
identical(coef(res1), coef(res2))

cirls.fit Constrained Iteratively Reweighted Least-Squares

Description

Fits a generalized linear model with linear constraints on the coefficients through a Constrained
Iteratively Reweighted Least-Squares (CIRLS) algorithm. This function is the constrained counter-
part to glm.fit and is meant to be called by glm through its method argument. See details for the
main differences.

Usage

cirls.fit(x, y, weights = rep.int(1, nobs), start = NULL,
etastart = NULL, mustart = NULL, offset = rep.int(0, nobs),
family = stats::gaussian(), control = list(), intercept = TRUE,
singular.ok = TRUE)

Arguments

x, y x is a design matrix and y is a vector of response observations. Usually internally
computed by glm.

weights An optional vector of observation weights.

start Starting values for the parameters in the linear predictor.

etastart Starting values for the linear predictor.

mustart Starting values for the vector or means.

offset An optional vector specifying a known component in the model. See model.offset.

family The result of a call to a family function, describing the error distribution and link
function of the model. See family for details of available family functions.

control A list of parameters controlling the fitting process. See details and cirls.control.

intercept Logical. Should an intercept be included in the null model?

singular.ok Logical. If FALSE, the function returns an error for singular fits.

6 cirls.fit

Details

This function is a plug-in for glm and works similarly to glm.fit. In addition to the parameters
already available in glm.fit, cirls.fit allows the specification of a constraint matrix Cmat with
bound vectors lb and ub on the regression coefficients. These additional parameters can be passed
through the control list or through ... in glm.

The CIRLS algorithm is a modification of the classical IRLS algorithm in which each update of the
regression coefficients is performed by a quadratic program (QP), ensuring the update stays within
the feasible region defined by Cmat, lb and ub. More specifically, this feasible region is defined as
lb <= Cmat %*% coefficients <= ub

where coefficients is the coefficient vector returned by the model. This specification allows for
any linear constraint, including equality ones.

Specifying Cmat, lb and ub:
Cmat is a matrix that defines the linear constraints. If provided directly as a matrix, the number
of columns in Cmat must match the number of coefficients estimated by glm. This includes all
variables that are not involved in any constraint potential expansion such as factors or splines for
instance, as well as the intercept. Columns not involved in any constraint will be filled by 0s.
Alternatively, it may be more convenient to pass Cmat as a list of constraint matrices for specific
terms. This is advantageous if a single term should be constrained in a model containing many
terms. If provided as a list, Cmat is internally expanded to create the full constraint matrix. See
examples of constraint matrices below.
lb and ub are vectors defining the bounds of the constraints. By default they are set to 0 and
Inf, meaning that the linear combinations defined by Cmat should be positive, but any bounds are
possible. When some elements of lb and ub are identical, they define equality constraints. Setting
lb = -Inf and ub = Inf disable the constraints.

Quadratic programming solvers:
The function cirls.fit relies on a quadratic programming solver. Several solver are currently avail-
able.

• "osqp" (the default) solves the quadratic program via the Alternating Direction Method of
Multipliers (ADMM). Internally it calls the function solve_osqp.

• "quadprog" performs a dual algorithm to solve the quadratic program. It relies on the func-
tion solve.QP.

• "coneproj" solves the quadratic program by a cone projection method. It relies on the
function qprog.

Each solver has specific parameters that can be controlled through the argument qp_pars. Sen-
sible defaults are set within cirls.control and the user typically doesn’t need to provide custom
parameters.

Value

A cirls object inheriting from the class glm. At the moment, two non-standard methods specific
to cirls objects are available: vcov.cirls to obtain the coefficients variance-covariance matrix and
confint.cirls to obtain confidence intervals. These custom methods account for the reduced degrees
of freedom resulting from the constraints, see vcov.cirls and confint.cirls. Any method for glm
objects can be used, including the generic coef or summary for instance.

An object of class cirls includes all components from glm objects, with the addition of:

cirls.fit 7

active.cons vector of indices of the active constraints in the fitted model.

inner.iter number of iterations performed by the last call to the QP solver.

Cmat, lb, ub the (expanded) constraint matrix, and lower and upper bound vectors.

References

Goldfarb, D., Idnani, A., 1983. A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming 27, 1–33. doi:10.1007/BF02591962

Meyer, M.C., 2013. A Simple New Algorithm for Quadratic Programming with Applications in
Statistics. Communications in Statistics - Simulation and Computation 42, 1126–1139. doi:10.1080/
03610918.2012.659820

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S., 2020. OSQP: an operator splitting
solver for quadratic programs. Math. Prog. Comp. 12, 637–672. doi:10.1007/s12532020001792

See Also

vcov.cirls, confint.cirls for methods specific to cirls objects. cirls.control for fitting parameters
specific to cirls.fit. glm for details on glm objects.

Examples

##
Simple non-negative least squares

Simulate predictors and response with some negative coefficients
set.seed(111)
n <- 100
p <- 10
betas <- rep_len(c(1, -1), p)
x <- matrix(rnorm(n * p), nrow = n)
y <- x %*% betas + rnorm(n)

Define constraint matrix (includes intercept)
By default, bounds are 0 and +Inf
Cmat <- cbind(0, diag(p))

Fit GLM by CIRLS
res1 <- glm(y ~ x, method = cirls.fit, Cmat = Cmat)
coef(res1)

Same as passing Cmat through the control argument
res2 <- glm(y ~ x, method = cirls.fit, control = list(Cmat = Cmat))
identical(coef(res1), coef(res2))

##
Increasing coefficients

Generate two group of variables: an isotonic one and an unconstrained one
set.seed(222)
p1 <- 5; p2 <- 3

https://doi.org/10.1007/BF02591962
https://doi.org/10.1080/03610918.2012.659820
https://doi.org/10.1080/03610918.2012.659820
https://doi.org/10.1007/s12532-020-00179-2

8 coef_simu

x1 <- matrix(rnorm(100 * p1), 100, p1)
x2 <- matrix(rnorm(100 * p2), 100, p2)

Generate coefficients: those in b1 should be increasing
b1 <- runif(p1) |> sort()
b2 <- runif(p2)

Generate full data
y <- x1 %*% b1 + x2 %*% b2 + rnorm(100, sd = 2)

#----- Fit model

Create constraint matrix and expand for intercept and unconstrained variables
Ciso <- diff(diag(p1))
Cmat <- cbind(0, Ciso, matrix(0, nrow(Ciso), p2))

Fit model
resiso <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = Cmat)
coef(resiso)

Compare with unconstrained
plot(c(0, b1, b2), pch = 16)
points(coef(resiso), pch = 16, col = 3)
points(coef(glm(y ~ x1 + x2)), col = 2)

#----- More convenient specification

Cmat can be provided as a list
resiso2 <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = list(x1 = Ciso))

Internally Cmat is expanded and we obtain the same result
identical(resiso$Cmat, resiso2$Cmat)
identical(coef(resiso), coef(resiso2))

#----- Adding bounds to the constraints
Difference between coefficients must be above a lower bound and below 1
lb <- 1 / (p1 * 2)
ub <- 1

Re-fit the model
resiso3 <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = list(x1 = Ciso),

lb = lb, ub = ub)

Compare the fit
plot(c(0, b1, b2), pch = 16)
points(coef(resiso), pch = 16, col = 3)
points(coef(glm(y ~ x1 + x2)), col = 2)
points(coef(resiso3), pch = 16, col = 4)

coef_simu 9

coef_simu Simulate coefficients, calculate Confidence Intervals and Variance-
Covariance Matrix for a cirls object.

Description

confint computes confidence intervals for one of more parameters in a GLM fitted via cirls.fit.
vcov compute the variance-covariance matrix of the parameters. Both methods are based on coef_simu
that simulates coefficients from a Truncated Multivariate Normal distribution. These methods su-
persede the default confint and vcov methods for cirls objects.

Usage

coef_simu(object, nsim = 1000)

S3 method for class 'cirls'
confint(object, parm, level = 0.95, nsim = 1000, ...)

S3 method for class 'cirls'
vcov(object, nsim = 1000, ...)

Arguments

object A fitted cirls object.
nsim The number of simulations to consider. Corresponds to n in rtmvnorm. See

details().
parm A specification of which parameters to compute the confidence intervals for.

Either a vector of numbers or a vector of names. If missing, all parameters are
considered.

level The confidence level required.
... Further arguments passed to or from other methods. Currently ignored.

Details

These functions are custom methods for cirls objects to supersede the default methods used for glm
objects.

Both methods rely on the fact that Cβ̂ (with C the constraint matrix) follows a Truncated Multi-
variate Normal distribution

Cβ̂ ∼ TMVN(Cβ,CV CT), l, u

where TMVN represents a truncated Multivariate Normal distribution. C is the constraint matrix
(object$control$Cmat) with bound l and u, while V is the unconstrained variance-covariance
matrix (such as returned by vcov.glm).

coef_simu simulates from the TMVN above and transforms back the realisations into the coeffi-
cients space. These realisations are then used by the confint and vcov methods which compute
empirical quantiles and variance-covariance matrix, respectively. coef_simu is called internally by
confint and vcov and doesn’t need to be used directly, but it can be used to check other summaries
of the coefficients distribution.

10 coef_simu

Value

For confint, a two-column matrix with columns giving lower and upper confidence limits for each
parameter.

For vcov, a matrix of the estimated covariances between the parameter estimates of the model.

For coef_simu, a matrix with nsim rows containing simulated coefficients.

Note

These methods only work when Cmat is of full row rank. If not the case, Cmat can be inspected
through check_cmat().

References

Geweke, J.F., 1996. Bayesian Inference for Linear Models Subject to Linear Inequality Constraints,
in: Lee, J.C., Johnson, W.O., Zellner, A. (Eds.), Modelling and Prediction Honoring Seymour
Geisser. Springer, New York, NY, pp. 248–263. doi:10.1007/9781461224143_15

Botev, Z.I., 2017, The normal law under linear restrictions: simulation and estimation via minimax
tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1–24.

See Also

rtmvnorm for the underlying routine to simulate from a TMVN. check_cmat() to check if the
contraint matrix can be reduced.

Examples

##
Isotonic regression

#----- Perform isotonic regression

Generate data
set.seed(222)
p1 <- 5; p2 <- 3
x1 <- matrix(rnorm(100 * p1), 100, p1)
x2 <- matrix(rnorm(100 * p2), 100, p2)
b1 <- runif(p1) |> sort()
b2 <- runif(p2)
y <- x1 %*% b1 + x2 %*% b2 + rnorm(100, sd = 2)

Fit model
Ciso <- diff(diag(p1))
resiso <- glm(y ~ x1 + x2, method = cirls.fit, Cmat = list(x1 = Ciso))

#----- Extract uncertainty

Extract variance covariance
vcov(resiso)

Extract confidence intervals

https://doi.org/10.1007/978-1-4612-2414-3_15

coef_simu 11

confint(resiso)

We can extract the usual unconstrained vcov
summary(resiso)$cov.scaled
all.equal(vcov(resiso), summary(resiso)$cov.scaled)

Simulate from the distribution of coefficients
sims <- coef_simu(resiso, nsim = 10)

Check that all simulated coefficient vectors are feasible
apply(resiso$Cmat %*% t(sims) >= resiso$lb, 2, all)

Index

check_cmat, 2
check_cmat(), 10
cirls, 9
cirls.control, 3, 4–7
cirls.control(), 2
cirls.fit, 3, 4, 5, 6, 7, 9
cirls.fit(), 2
coef, 6
coef_simu, 8
confint, 9
confint.cirls, 6, 7
confint.cirls (coef_simu), 9
confint.cirls(), 2

family, 5

glm, 3–7, 9
glm.control, 4
glm.fit, 5, 6

model.offset, 5

qprog, 6

rtmvnorm, 9, 10

solve.QP, 6
solve_osqp, 6
summary, 6

vcov, 9
vcov.cirls, 6, 7
vcov.cirls (coef_simu), 9

12

	check_cmat
	cirls.control
	cirls.fit
	coef_simu
	Index

